If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-42t=0
a = 1; b = -42; c = 0;
Δ = b2-4ac
Δ = -422-4·1·0
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-42}{2*1}=\frac{0}{2} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+42}{2*1}=\frac{84}{2} =42 $
| t^2-42t=0 | | t^2-42t=0 | | t^2-42t=0 | | t^2-42t=0 | | 1=y/9+4 | | 9/2-3y=15 | | 2^(3x-1)=5(2x+2) | | 2^(3x-1)=5(2x+2) | | 2^(3x-1)=5(2x+2) | | -10y+20=50 | | -10y+20=50 | | -10y+20=50 | | g+4=63 | | (g+7)=63 | | g+7=63 | | 23+9x=9+2x | | 23+9x=9+2x | | 3n^2-15n-8=0 | | 3n^2-15n-8=0 | | 3n^2-15n-8=0 | | 3n^2-15n-8=0 | | 3n^2-15n-8=0 | | 4a-1/6=a-5/3 | | 4a-1/6=a-5/3 | | 4a-1/6=a-5/3 | | 4a-1/6=a-5/3 | | 4a-1/6=a-5/3 | | 4a-1/6=a-5/3 | | 4a-1/6=a-5/3 | | 4a-1/6=a-5/3 | | 4a-1/6=a-5/3 | | 4a-1/6=a-5/3 |